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1. Introduction

Let § = {Xt:t 2z 0} be a regenerative process which we wish to
simulate, Under mild regularity conditions the distribution of xt con-
verges to the distribution of some limiting ran&om variable (or vector) X.
This type of convergence is known as weak convergence and written
Xt =X, as t t « Simulators speak of X as the "steady-state" con-
figuration of the system and are often interested in estimating the
constant r = E{f(X)), where f 1is a given real-valued function defined
on the state-space of the process X. The regenerative method of estima-
tion provides a means of constructing point and interval estimates for r;
see IGLEHART (1977) for an expository summary of this method,

The problem we consider in this paper does not involve estiﬁation
of r, but rather the estimation of extreme values of the regenerative
process X. Suppose, for the sake of discussion, we are simulating a
stable GI/G/1 queue in order to estimate the maximum waiting time among
the first n+l customers; call this random variable W:. As n grows,

so will W:. However, Wz does not converge to a finite limit, but rather




diverges to +w. We will be interested in estimating the distribucion
function of W: for finite, but large n. By the same token we might
wish to estimate the distribution of the maximum queue length during the

)
interval ([0O,t]. While this problem of estimating extreme values would seem
to be of great practical importamce to simulators, we know of no papers in
the simulation literature which offer any guidance on the subject. This
paper will attempt to partially fill the gap.

We begin in Section 2 by summarizing a series of probabilistic
results in extreme value theory which will provide the theoretical basis for
the methods we propose. Section 3 discusses several methods for estimating
extreme values for the general regenerative simulation, In Sections 4 and 5
we treat the special cases of the GI/G/1 queue and birth-death processes
respectively, Theoretical results are available for these two-classes
of regenerative processes that are useful in assessing the accuracy of
the estimation methods proposed. Section 6 contains the numerical results

for simulations of the M/M/1 queue carried out to illustrate the estima-

tion methods proposed.

2, Probabilistic Background

Let {Fn:n‘z 1} be a sequence of distribution functions (d. £, 's)

on the real line, IR = (-w, +x). This sequence converges weakly to a

d.f. G {if lim Fn(x) = G(x) for all x €IR which are continuity
n o
points of G, We write Fn = G to denote this type of convergence, If

X (resp. X) is a random variable (r.v.) with d.f, Fo (resp. G), we




also write xn =X to denote this weak convergence, Sowetimes it is
conven.ienlt to write xn =G to denote the same thing. The material
presented in this section can be found for the most part in deHAAN (1970),
currently the best comprehensive treatment of the subject.

Now let [Xn:n_>_ 1} be a sequence of independent, identically
distributed (i,i.d.) r.v.'s and denote the maximum of the first n r.v.'s
by M o= max{Xj :1 <3 <n}. If each of the Xj's has d.f. F, then Mn
will have d.f. Fn. We shall say that F belongs to the domain of
attraction of the nondegenerate d.f. G, and write F € §(G), if we can

choose two sequences of constants (an:nz 1] and {bn:n > 1} with

an > 0 such that .
n
(2.1) F(ax+b) -G(x)

as n —»o for all x € R for which G 1is continuous. Equivalently,
F e o(6) if (Mn-b“)/an =G as n -, Thus for large n we would
approximate P{Mn < x} by G((x-bn)/an). If ar,v, X has d.f,
F ¢ 5(G), we also write X € (Q).
A famous result in extreme value theory states that the only' d.f.'s

G which can arise in (2.1) are of one of the following three types:

o, x<0

(2.2) 0(x) =
exp( -x'a) , x>0
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(2.3) ¥ (%) =

(2.4) ' A(x) = exp(-e™™) ,

where in (2.2) and (2,3) @ 1is a positive constant. Recall that two
d.f.'s G1 and G2 are said to be of the same type if there exist

two constants a2 and b, a > 0, such that Gl(x) = Ga(ax + b) for all

x €R, Thus aside from translations and scaling by a positive constant
the three d.f.'s given in (2.2) - (2.4) are the only ones that ~an appear
in (2.1). This result on the three types of limit d.f.'s is usually
attributed to GNEDENKO (1943), howeveF it was first formulated in this
way by FISHER and TIPPETT (1928).

The next logical result to seek is necessary and sufficient conditiomns
for F € 9(G), where G of necessity is one of the three d.f.'s given in
(2.2) - (2.4). Furthermore, if F € ¢(G) we need a method for selecting
the two sequences [an:n‘z 1} and {bn:nkz 1}, To this end we first

define the right endpoint, x_ < +w, of the d.f. - F as

0

x = sup{x:F(x) < 1)

0
Accescion For
NTIS GRA&I K
Ad f. F ¢ if and only if for all x>0 RN O
f S a) i y or Uz mitsuneed ]
Justificotion B

(2.5) lim = 1;(';" - xY By
t 5o - Distribution/

Availability Codes
Aveil and/or
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If Fe o Oa), then we can take

(2.6) a = inf(x:1 - F(x) < /n}
and b =0. Adf Fe¢ s(‘l’a) if and only if Xy <« and for all i
x>0
-1
l-F[xo-(tx) ] a
(2.7) lim - =x 7 ],
t 9o 1 - F(x.,~-t ™) .

1f Fe s(!’a), then we can take b = x, and

a = x, - inf(x:1 - F(x) < 1/n} ,

The final case, F € §(A), is the most important one for our simulation

applications, A d.f. F € 8(A) if and only if

(&.0) lim 1 - F(t + x£()) _ _-x
tfxo 1 - F(t) =e for all x €R , k
where for t < X, ﬂ
%o |
[ (1-F(s))ds »
t
f(t) = T (E) .

If F € §(A), then we can take




b = inf(x:1 - F(x) < 1/n]

and
*o

‘ [ - B(r))ae
b

- n ——
n 1- F(bn)

Alternative expressions are available for a, and bn' We can use a;
' p L =h'! -
and bn provided an/an 1 and (bn bn)/an 0. Let Qn(p) denote

n

the p-quantile of the d.f. F': for 0<p<1,

Q,(p) = inf{x:F'(x) > p) .

Then if F € 8§(A), we can alternatively select

(2.9) b, = Qn(e' 1)
and

-e'1 -1
(2.10) a =Q(e” ) -q(e’)

Furthermore, if F.& §(A) and Xg = +%, Mn/bn=$ 1 as n = «, Many

of the classical d.f.'s such as the exponential, gamma, normal, lognormal,

and logistic belong to A(A).

Suppose F has Xy = o and possesses an exponential taii:
(2.11) 1 - F(x) ~ b exp(-ax) , as X —w ,
6




where a and b are two positive constants, Then it is easy to check
that (2.8) holds and F € §(A). Using the expressions (2.9) and (2.10)

it can be shown that bn and an can be selected as follows:

-1
(2.11a) b, =2a  lIn(md) ,
and
-1
(2.11b) a =a .

An interesting (and practical) situation arises if F is a discrete
d.f. as, for example, the geometric d.f, F(x) = 1 - exp(-[x]), x>0,
where [x] 1is the integer part of x, In this case neither (2.5). nor

(2.8) hold, and since x, = +o, F does not belong to the domain of

(o}
attraction of any of the three types (2.2) - (2.4). However, a result
has been salvaged by ANDERSON (1970). Let @ be the class of all d.f. 's

whose support consists of all sufficiently large positive integers. Then

for F € Q,

(2.12) lim sup F(Q L. bn) < exp(-e'x)
n -

and

(2.13) lim inf F“(a‘lx +b) > exp(_e-(x-a))
n-o>w

for some @ >0, all x, and some sequence {b :n > 1} if and only if

. l - F(n o
(2.1y) iim T F(osl = e .

n -
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When this condition holds, the constants. bn can be selected as follows.

For F € @ and each positive integer n let h(m) = -log(l-F(n)) and ;
define hC to be the extension of h obtain2d by linear interpolation
]

for x > 1., Then define for x> 1
Fc(x) =1- exp(-hc(x)) .

Clearly Fc is a continuous d.f. and for sufficiently large x 1is
strictly increasing since F € @. For x <1 the Fc can be defined
arbitrarily just so long as it is a d.£f. In terms of Fc we can define

b_ for large n as the unique root of

n
1-F(b) = /an . : ;
If FE€Q and 1 - F(n) ~b exp(-an) as n -« (a,b>0), then
for b_ = a'l In(nb) it can easily be shown using the method followed

n

by HEYDE (1970) that for integer £

(2.15) lim [P{Mﬂ - [bn] 5 2} - exp(_e~a(2-dn))] =0 ,

n — oo

where dn = bn - [bn]' Thus for n large we would (ignoring a possible

continuity correction) use the approximation




P(M S 2 + [byl) @ exp(-e 2(*d0))
or

(2.16) P(M <1} % exp(-e'a(g"b“))

Suppose now that we also have defined on the probability triple
(2,3,P) that supports the i,i.d. sequence [Xn:nz 1} a renewal process
{£(t):t >0} with mean time between remewals m (0 <m < )., Then
the weak law of large numbers for renewal processes states that

-1
dt)/t =>m as n - », Next set

Mt':=max{xj:1_<_j§2(c)} . .

The following useful result for this situation was obtained by BERMAN
(1962). 1f (Mn-bn)/anﬁc, one of the three extreme value d.f.'s
(2.2) - (2.4), then as t 9o

' v
(2.17) (MI-bp )8 =67

This result provides a useful tool for extreme values of regenerative
processes., To be explicit suppose 5 = {Xt:t > 0} 1is a regenerative

process defined on (Q,3,P) and Tj’ j > 1, is the time of the jth

regeneration point of X with TO = 0. Then the renewal process

{£(t):t > 0} which counts the number of regeneration points in (0,t]

is defined by




(t) = max{j:'l.‘j <t}

with £(0) = 0, For i > 1, let

+ »
M = sup(X:Ty ; <€ < T,) .

Since X is regenerative, the sequence of maxima, {M;:j‘z 1), will be

i.i.d. Then if Lt = sup(xs:o‘s s < t}, clearly

(2.18) max{M;:lsj <o(e)) SL, Smax(M[:1 <3 S g(e) + 1) .

Combining the inequalities of (2.18) with the limit theorem of (2.17)
enables us to show that

1/
(2.19) (Lt-b[t])/a[t]:c; n

where m = E(Tl], provided MI € 8(G). Of course if MI € @, then the
weaker results of Anderson or Heyde are all that can be expected,

We conclude this section by summarizing the problems confronting

us for a regenerative processes with continuous state space, If MI € 8(6),

then we can use (2,19) to obtain the asymptotic (for large t) approxima-

tion
; 1 X = b
) (2.20) P(L, <x} 2 c/m (_z_Ltl) .

[t

10




Alternatively, we can also show that

(M G

2(t) " Pueey /By T

which when combined with (2.18) yields the asymptotic (for large t)

approximation

x-b
(2.21) P{L < x} v Gl —2LE)}
t — = az(t)

This expression does not require an estimate for m as is the case

with (2.20).

1f the simulation is run for n cycles, then (2.20) or (2.21) should be

replaced by .

x-b

(2.22) p{ max M‘.‘sx};c( “)

1<j<na’
For (2.20), (2.21), or (2.22) to be useful, we must estimate a, and bn'
To use (2.20) we must also estimate m. The expected cycle length, m, can
of course be estimated by the sample mean of the cycle lengths observed. Sev-
eral methods for estimating a and bn will be discussed in Section 3.
Finally, we must assess whether MI € f(G) for one of the three d;f.'s
(G's) given in (2.2) -~ (2.4). For many simulations in which extreme values
are being estimated, the limit d.f.'s G will be either A or ¢a’ since the
maxima arising are unbounded (xo = 40), Our experience with specific examples
indicates that if the regenerative process is stable (converges to a non-

degenerate limit), then G = A; while if the process is "null-recurrent’

(m = E(Tl} = 4»), then G = Qa. However, in this case Gl/m(x) =1
for all x >.0 which indicates that a different normalization must be

11
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used to obtain a nondegenerate limit. In any case, we note that if

then 1n X € 9(A) with

X € 8(%,) with constants a; >0 and b =0,

constants a = a-l and - bn = 1n a; . We note in passing that the extreme
value behavior of some functions of a regenerative process can be handled

in the|same way. I1f the state space of the regenerative process is discrete,
then we shall only consider the situation in which the d.f. of MI € Q2 and
p{M; >n) ~b exp(-an) as n + = for some a,b > 0. 1In this case we can

approximate the d.f. of L, or max{M}:l <3 <n} by using (2.12) and (2.13)
or (2.15) and (2.16).

3. Statistical Estimation Problem

We now present some procedures which can be used to estimate the d.f.
of extreme values occurring in a regenerative stochastic process belonging
to a (known) domain of attraction. (The methods will be illustrated for
the case of maximum values, but analogous procedures could be used for
minimum values.) The basic idea underlying all the procedures is to
similate a process in order to form an empirical d.f. of say the maximum of
the process over a given period of time or number of cycles, and to regress
this against the functional form of the appropriate extreme value
distribution. The methods differ as to how the empirical d.f. is formed
and how the regression is done. The applicability of the methods depends
on the process lying in the domain of attraction of a nondegenerate d.f.
For a process taking on positive values, but having right endpoint x

0

convergence td a nondegenerate extreme value distribution would not hold.

<.,

This would be the case for instance for the queue length process in a

system with finite waiting room.

12




3.1. The Continuous State Space Case

Supﬁbse we are interested in the maximum of a continuous state space
regenerative process over n cycles. Choose an integer k > n, (the
choice of k will be discussed later) and simulate “ cycles of the pro-
cess, yielding individual cycle maxima yl,k > Y2,k D cee ? yk,k' A sample
of k cycles contains (i) subsets of n cycles. We then use the
simulation results to find the maximum of the process over each subset of
n cycles. The only yi,k's which can be maxima for some subset of n

cycles are As explained below, we are only interested

Y1,k Tkt ,k

in yl,k”"’yio,k where the predetermined number 1,

considerably less than k-ntl. Thus in performing the simulation, ve, need

is usually

~nly keep track of y1 k,...,yi K’ and the continuous state space assump-
’ 0’

10,k' (For instance

the customer waiting time process of a queueing system may have an atom at

tion can be relaxed to the distinctness of Yy ety
»

0; however this usually need not concern us.) Now observe that Y x is
. 1

(57)

k
n-1 of the (n) subsets of n cycles,

the maximum value in

1 =1,...,k-n+l. Thus is the maximum value in a fraction n/k

"1,k
of the (:) cycles, Y2 k is the maximum value in a fraction

»
n(k-n)/(k(k=1)) of the (:) cycles, etc. Let En(x) (suppressing k)

be the empirical d.f. of the maximum of the process over n cycles. Then

En(yl_k) =1,

k-n
Ealrg,id = 1 - n/k =57,
k - - -
E(y, )=%X2. n(k-nz - kn k-? 1 ,
n3,k k k(k=1) k k-1

k-n-1+2
and generally En(yi,k) En(yi-l,k) ey e for 1 2,...,10. Thus
En(yi k) can be obtained by a simple recursive computation.
. .
13
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It is desirable to have the values En(yi,k) diminish slowly enough
from 1 to 0 so as to provide good upper quantile information for the re-
gression procedure. Thus we want a rather high k/n ratio (say, at least
10). But .u should be large enough so that the extreme value distribution
provides a good approximation to the maximum of the process over n
cycles. So En(yi,k) is very small for many of the latter values of the
k-n+l possible 1's. Using too many yi’k's in the regression would tend
to drown out the effect of the first few, and could be a source of noise
when En(yi,k) is very close to O. Thus we only consider yi,k for
1 <1, where i, = max{{ : En(yi,k) > €} for € such as .001.

Consider the nonlinear regression problem of selecting a and bn
so as to obtain the least-squares fit of A((x1 - bn)/an) to En(xi)’ vhen
A 1is the appropriate domain of attraction, for data points x

1 =2,k

K For short we shall denote this problem by
o,

En(xi) ~ exp(-exp(-(xi - bn)/an)).
When Qa is the appropriate domain of attraction, the problem becomes
E_(x,) ~ exp(~(x,/a!) ).
n"1i 1"%n

(Note that the data form a dependent sample.) The point is not used

Y1,k

in the regression since E (y ) = 1, which effectively makes vy the
n’1,k 1,k

right endpoint x4 even though A has a right endpoint of + = . This

manifests itself in the regression by forcing bn to = or a to O.

Refer to the above procedure (for a figed k,n, and io(e)) as the basic

14
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nonlinear regression procedure. In the case of domain A, this procedure

provides estimates ;n’ ﬁn of the norming constants for A. An alterna-

. tive procedure, referred to as the basic linear regression procedure, is to

(take a double =-ln transformation and) perform the linear regression

-ln(-ln(En(xi))) - c + dn’ with x, as above, to obtain estimates C

a*t i
and dn' This fit can be used directly, or equivalently note that we can
form estimates a_ = E-l, § = 12 of the norming constants for A.
n n n n n

Recall that 1if X € lf(Oa) with parameters a; >0 (and b; = 0)
then 1ln X ¢ 692A) with norming constants a = c-l and bn = In a; .
Thus performing the nonlinear regressiom procedure on X, based on
X e ﬁRQa), would lead to En(xi) - exp(—(xilaasa) in order to estimate
a;, a. Performing the nonlinear regression procedure on 1n X, based on
In X 547(A), would lead to En(ln xi) » exp(-exp(-(1n xi-bn)/an)) in order
to estimate a, bn' On noting that En(ln xi) = En(xi) by strict mono-
tonicity of 1n, it is apparent that the results are the same whether we
perform the (nonlinear) procedure for X based on X ¢ Cﬁ@c) or on

1n X based on 1In X € &(A). The same is true for the linear procedure

-a
- ]
since En(xi) = exp( (xilan) ) is transformed into
- - ~ - l.
}n( ln(En(xi))) a 1ln xi a 1ln L

If one were unsure as to which (or any) domain of attraction is appropri-
ate, regressions corresponding to all the candidate extreme value distri-
butions could be performed and the adequacy of the fits evaluated. For

instance, we could perform one regression using Yy k's and another using
?

L ]
1n yi,k 8. .
Consider the specialization to & (A) and assume the exponential tail

assumption (2.11) holds. We can use either the basic linear or the

15
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nonlinear regression procedure to obtain estimates ;n’ Gn if n 1is large
enough for the approximation (2.22) to be good. Then without further
similation or regression, we can use (2.11a) and (2.11b) to obtain

estimates E;, - ;n' 5;, = ;nln(n'/n) + %n' The linear or nonlinear
regression procedure generally increases in accuracy with k/n, but the
relation (2.22) deteriorates as n decreases. Thus for a fixed amount of
simulation k, n should be chosen as small as the adequacy of (2.22)
allows.

The relations (2.lla) and (2.11b) suggest a possible variation to
either the basic linear or nonlinear regression procedure: simulate k
cycles and substitute a = a-l, bn - a-lln(nb), in the right~hdnd side of
the regression. Now form the empirical d.f. as in the basic procedure for
a fixed n = nj. Do this for several values of nj, pool the sample, and
perform one regression to estimate a-l, b. Assuming (2.1la) and (2.11D)
hold adequately, this variation extracts more information from a given

amount of simulation. This comes at the cost of increased complexity, and

has not been attempted.

3.2 Modifications for the Discrete State Space Case

Now assume the regenerative process of interest has a discrete state
space and H; € . 1f the basic (continuous state space) procedures were
used, there could now be ties among the Yy k's. So we simulate k cycles

1]
of the process and let yl,k > yz'k Deoed yl,k be the distinct individual

cycle maxima, occurring respectively in N N di.ferent cycles.

1k’ 7k

The number of N1 k's could be quite small even for k lasge. Letting
’ i-1
No,k = 0 and mi,k = xfo Nl,k’ yi,k is the maximum value in
16
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2

I=1

3

n-1

of the (:) subsets of n cycles, for 1 { 2. Thus En(y1 k) = 1, and 1if
1]

k=n k-n-1
for instance Nl,k = 2, then En(yz,k) - 5 T

etc. So En(yi k) can still be obtained by a simple recursion. In
’ .

practice, we would only consider Vi x for 1 € i,, where
?

0

i = max{i : En(yi k) Z_e} for some small € . Now 1 is a function of
]

o]

0

ti:e sample path since the number of duplications is not known a priori.
21l the procedure where we throw out Y1k and do a regression as in the
1]

basic (continuous state space case), the basic full delete procedure

(either linear or nonlinear). The basic partial delete procedure may not

completely throw out Instead, we consider a modified empirical d.f.

1,k
as follows: |{if Nl K 2 2 and say for example N
]
k-n _ k-n-l o kn | k-n-1 | k-n-2
B0, = % kT amd E(yp ) =g k-1 = k-2 ° ete-

1,k = 3, then take

We only alter En(yl,k)’ leaving En(yi,k)’ 1 > 1 as bvefore. If
Nl k" 1, the basic full and partial delete procedures are equivalent;
»
otherwise they differ only in the use of an additional regression data
point by the partial delete procedure. Most of the variations mentioned in
the continuous state space case are also available in the discrete case.
After having obtained estimates ;n’ Gn’ we would approximate
A-l P
P{lgﬁgp H; < x} by exp(-exp( a_"(x + ) bn))) where & represents a
continuity correction such as & = 0 or 1/2. Estimating the d.f. of

1?3? ﬁ; is tougher in the discrete than the continuous case for the
n

17
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following reasons: (i) a continuity correction (68) 1s needed, (ii) true
convergence to the extreme value distribution is not attained, suggesting
that the approximation on which the regression equation is basei may not be
as good'as in the continuous case, and ({i{1) due to duplications asscciated
with the yi’k's, the number of data points for the regression is greatly
reduced relative to the continuous case, for a givem k,n, and cutoff ¢.
The basic procedures are illustrated in Section 6 for the M/M/1
queue. Before leaving this section we point ocut some other relevant
references. The reliability theory literature contains many references on
the problem of testing whether observations come from an exponential or
extreme value d.f. and of estimating the associated parameters. Two useful
nlaces to find such papers are EPSTEIN (1960) and MANN, SCHAFER, and
SINGPURWALLA (1974), Chapter 3. PICKANDS (1975) has developed a method for
determining which G d.f. is appropriate for a given set of observatiomns.
His method uses a random and increasing number of the yj’n's as n
increases. The method is expensive computationally and emphasizes an
aspect of the extreme value problem which is not of great concern for
simulation. Finally, WEISSMAN (1978) contains another method for estimat-

ing the constants a and bn.

4. The GI/G/1 Queue

The GI/G/1 queue and the birth-death processes treated in Section 5
are among the very féw regenerative processes for which we know the
values of a and bn. For this reason these processes are excellent
candidates for testing the effectiveness of the estimation procedures

proposed in Section 3,

18
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finds a free server, and experiences a service time Vo- Customer n

arrives at time tn and experiences a service time A\ Customers are

In the GI/G/1l queue we assume customer O arrives at t =0

served in their order of arrival and the server is never idle if customers

are waiting, Let the interarrival times t -t =u n>1l We

n n-1 n? =
assume the two sequences (vn:n‘z 0} and (un:n‘z 1} each consist of
i.i.d. r.v.'s and are themselves independent, Let E{un] = AJ' and

E{vn) = p-l, where 0 <A, u <. The traffic intemsity p = Mu is

assumed to be less than one, We exclude the deterministic system in
which both the vn's and un's are degenerate, Let the waiting time of
the nth customer be wn, the workload (or virtual waiting time) aE
time t be Vt, and the number of customers in the system at time ¢

* *
be Q.. Also set wn = max{wj.o <3 < nj, v, = sup{Vs.Os s < t},

t
*
and Qt = sup{Qs:O.s s <t}. Let xn =V 1Y, n> 1, and set
S =X, + - 4+ X for n>1 and S, =0, If n, denotes the number
n 1 n - 0 h)
of customers served in the jth busy period, then ny is related to the

partial sum process {Sn:n.z 0} since

n, = inf(n > O:Sn <0}.

When o < 1, we have m = E(nl] < w, Also -Snl is the length of the
first idle period. We assume that Xl has an aperiodic d.f., (support
is not concentrated on a set of points of the form 0, +h, +2h, +3h, ...),
that there exists a positive number « such that E{exp(xxl)] =1,

and 0 < b = £{x1 exp(le)] < w. These assumptions will normally be

satisfied if the d.f, of Yo has an exponentially decaying tail; e.g.,




when Vo has a gamma distribution., Under these conditions we know

(see IGLEHART (1972)) that

(4.1) (W: -« cln)/x'1=>A1/m(x) .
and
(k.2) (vy - <! 1 cet)/x'1=>A HE
where
KSL, 2

o . ll-Ele )

1 K“.Km
and

KV
% = E(e o}cl

' : * *
Thus to use (L4.1) and (4.2) for estimating the d.£.'s of W,ooand V,

K8 .
we need only estimate m and Ef{e nl], assuming that «, M s and

E[eKVO] can be calculated numerically, In the special case of M/G/1
queues no estimation is required, since m = (l-o)'l and E[eKsnl]
= ¥ (Mx). If the simulation is carried out for a fixed number of cycles,
then counterp;rts of (4.1) and (4.2) hold with the exponents of A
removed.

The queue-length process {Qt:t‘z 0} is discrete-valued and the
associated d.f£, of‘ MI € @, Hence a limit theorem comparable to (4.1)
or (4.2) does not exist. Instead we must seek results like (2,12) and
(2.13) or (2.15) and (2.16). Unfortunately, these results are only
known fcr the M/G/1 and GI/M/1 queues; see COHEN (1969), Theorems 7.2

<t< Tj]. Then for an M/G/1 queue

§-1

the counterpart of (2,16) is

and 7.5. Let M; = sup{Qt:T .

20
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(4.3) P( max M;.S L} = exp(-e ,
| 1<j<n
where
a=1n ((Ax)/N)
and
b =a’ In (c,n)
n 2

On the other hand, for GI/M/1l queues (4.3) holds with a =1n((p-k)/u)
and the same value for bn' Tables 1 and 2 contain the values of m, K,
b Cpp and ¢y for the M/M/1 and M/Ey/1 queues as a function of

the traffic intensity p.

(4.4) EXAMPLE. M/M/1 queue. For this queue we are able to calculate
exactly the distribution of ﬁ; associated with the waiting time process,
the virtual waiting time process, and the queue length process. The tail
of the distribution of MI for the waiting time process is given in COHEN
(1969), p. 606, or can be calculated directly from results in IGLEHART
(1972), p. 630. The result is

~kx

P(MI >x} = p(l=ple _ . p(l.-;:o)e-.kx as x t o,

l_pze-kx

The corresponding =-3ult for the virtual waiting time process is given in

21
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TABLE 1

Parameter Values for M,/M/l

Queue with . = 10

22

P o K My < C2
.1 1.11 9 .900 .09 .9
.2 1.25 8 .koo .16 .8
3 1,43 7 .233 .21 .7
A 1.67 6 .150 2k .6
5 2.00 5 .100 .35 5
.6 2.50 i 067 .2k "
7 3.33 3 LO43 .21 3
.8 5.00 2 .025 .16 .2
.9 10.00 1 .011 .09 .1
.95 20.00 0.5 .005 . 0475 .05
.99 100.00 0.1 .001 .0099 .01




N —

TABLE 2

Parameter Values for M/E,/1 Queue with . = 10
o) m K My ¢ oy
.1 .11 15.00 .3375 L1562 2.5
.2 1.25 12.60 ,2016 .2346 1.7119
.3 1.43 10.61  .1395 L2874 1.3038
N 1.67 8.83 .lol2 L3179 1.0201
.5 2.00 7.19 0741 .3263 0.7957
.6 2.50 5.6L 053k .3118 0.6050
.7 3.33 416 L0367 .2733 0.4357
.8 5.00 2.73 .0227 .2094 0.2809
.9 10.00 1.35 .0106 .1188 0.1366
.95 20.00 0.67 .0051 .0630 0.0674
.99 100.00 0.13 .0010 .0132 0.0134
j
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(4], p. 606, or can again be calculated from [10], p. 632. The result is

-kx

+ 1- -k
P{Ml > x} = s;:ii%{;— ~ (1-p)e X as x 4+ =,

The corresponding result for the queue length process is given in Example

(5.4). 4‘

5. Birth-Death Processes

A second class of regenerative processes for which theoretical
results are available is birth-death processes in discrete or continuous

time, Let [Xn:n > 0) be a discrete time Markov chain with state space

E= (0, 1, 2, ...} and transition probabilities given by
s a4, j=1i-1
(D-l) le = l Pi, ] = 1+1
o, other j,

- P 1] 1 - .
where qy = 0, Py = 1 and the other q;'s and p,'s are positive,
This chain will automatically be both irreducible and periodic, Further-
more, recall that it will be recurrent if and only if
- 1
L (7 Pj) =
j=1 3
where g = 1 and nj = (po te pj-l)/(ql cee qj). We assume the chain

is recurrent. It will be positive recurrent if and only if

24




Next define

rl(k) = inf{n > O:Xn = kj k € E

2

the first entrance time to state k, Let Pi{-} = P{'IXO = i}, the

conditional probability of an event, given XO = i, Then our concern

here will be in the probability, given Xo = i, of the Markov chain

entering state n before it enters state 0O, Let this »robability be

denoted by

ri(n) = Pi[Tl(n) < 11(0)] , i€ (1, 2 ..., n-1}) ,

H ) s

For tunately, this probability has been calculated and in particular

n-1 “1-1
ro(n) = rl(n) = (1 + ;;l (xipi) ) ;

see CHUNG (1960), p. 68. Note that lim ro(n) = 0 when the chain is

n -ow

recurrent, in keeping with our intuition., Define

+
= : -1}
Ml = sup{Xn.O <nX< rl(O) 1

-1

n
(5.2) P ('Zg (nipi)-l) , as n -,
1=

[

O{MI >n) = ro(n+1)

25
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Suppose now that we have a birth-death process [Xt:t >0}: a
continuous time Markov chain with state space E = {0, 1, ...} and
embedde? jump chain whose probabilities are given by (5.1). As above,
define the first entrance time to state k and the maximum in the first

cycle by

Tl(k) = inf{s > 0:X__ £k, X = k)

and

+
M, = sup{xt. 0<t< 11(0)} .
Because of the path structure 6f the birth-death process, it is easy to

see from (5.2) that

n -1
+ -1
(5.3) P,(M; > n} = [1 + 2 i§1 (ny A ] ,
where ki [resp. pi] are the birth [resp. death] parameters and
Ty = 1, My o= (%okl ce xi-l/“l“E see gi). The same argument can of

course be used to show that (5.3) also holds for semi-Markov processes

with embedded jump chain whos: probabilities are given by (5.1),

(5.4) EXAMPLE, WWMWs gueue, The queue-length process, iQt=t.Z 0},
is a birth.-death process with parameters kj = A and By = e (3 A s),

j > 0. Assume the queue has traffic intemsity o = Nus < 1, a necessary

and sufficient condition for recurrence. Then from (5.3)

26
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+
PQ[M1 > n)

]
| e
'-h
nMMs
(o]
A
(oLl
-
1
-

s y n-(8+l) -1
_ By i 1! S. -1 .
[Eo Y O i§0 ¢ ]

Asymptotically, as n —w

s (ss/s.')n-1 s =1
+
I’O{Ml >n} ~ l . o
(s (1-p)/s!)o , p <1,
Thus for p < 1 we can use (2.16) to obtain .
P.{ max MY < 2} 2 exp( —e-au’—bn)) ,

where a = ln p = and b = al 1 (n s%(1-p)/s!). Note that this is

consistent with (4.3). 4
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6. Numerical Results

A simulation of the M/M/1 queue was performed to help assess the
effectiveness of the basic procedures proposed in Section 3. Our goal 1is

to estimate the d.f. of 1??? ﬁ+, vhere ﬁ; is either the maximum waiting
n

time W, virtual waiting V, or number of customers Q in the system in

cycle j. The processes {wn :n> 0} and {Vt : t > 0} have continuous

state spaces, {Q_: t pd 0} has a discrete state space, and A is the

t
appropriate extreme value distribution in all three cases. Using estimates
+
a , b, we approximate P{ max M, < x} by A((x+ & -b )/a where & = 0
n’ P PP 18%" < y  A(( n)/n)

for Wn and Vt’ and we try 6= 0 and 6 =1/2 for Qt' Theoretical

values of a and b as well as the exact values of P{123§éM; £ x}
are available from the results in Sections 4 and 5. All notation and
couventions in this section are as in Section 3.

The random number generator used was the DEC~20 FORTRAN "RAN"
function. In the terminology of Section 3, all experimental results
reported are for basic linear or nonlinear regression procedures. Several
values of k,n, and traffic intensity p were tested. Both the linear and
nonlinear regression procedures were tried on wn, while only the linear
regression procedure was tried on Vt and Qt' The nonlinear regression
was performed using SUBROUTINE LSQFDN of the National Physical Laboratory
Algorithms Library. Both full and partial delete as well as continuity
corrections of 6 = 0 and & = 1/2 were tried on Qt. For Qt’ a cutoff

of €= .0001 was used. For wn and Vt' a cutoff of € = .00l was

used. Thus for wn and Vt, 10 is as follows:
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k n io
100,000 2000 342
100,000 1000 686

50,000 1000 341
20,000 1000 135
50,000 250 801*
25,000 250 678
10,000 250 270

The starred entry indicates that for k = 50,000, n = 250, {, corresponds

0
to € = ,01755 rather than to € = .00l. Note that in all cases, there
were sufficient points for the regression for Qt; and yl,k""’yio,k
were always distinct for Wn and Vt.

Tables 3-5 contain the results of the simulation for estimating a

+
and b_. Tables 6-10 contain the estimates of P{ max M, < x} by
n 1<3én 3 =

A((x + &6 - bn)/an)’ using the estimated values of an, bn shown in Tables
3~5. The entries contained in the tables are the sample means of the
various estimates over the number of replications and the half-length of a
symmetric 90%Z confidence interval about the sample mean. For example, in
Table 4, take k = 50,000, n = 1000, and 50 replications. Then a 90% con-

fidence interval for a based on 50 replications of the linear

1000
regression procedure is [.1966 - .0039, .1966 + .0039). The corresponding

true value of 21000 © «.2. Tables 6-10 report the true values of
+
A - b )/a and P{ max M, < x} for various x, as well as the
((x n)/ n) 1<jsnj_ 1]

corresponding values of A((x + & - bn)/an) using estimated a, bn' For

example, in Table 9, take k = 50,000, n = 250, and 100 replications. Then
+

the true values of A((9 - bzso)/azso) and P{153§§50 Mj < 9

are respectively .7834 and .7831, while the sample mean of

AC(9.0 - bn)/an) is .7832 with a corresponding 90X confidence interval

half-length of .0062.
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Estimates of o,

TABLE 3

and b, for {W, :n >0} inthe W1 queue with u = 10

true valyes Iinear regression | noniinear regression
' » -~ ~

k/n/#repl. [¢] 8y bp o, bn an 3,‘
100,000/1000/50 | .5 2 1.1043 .1987 1.1069 «1981 1.1076
0021 «0035 +0028 0037
50,000/1000/50 | -5 «2 | 1.1043 1974 1.1043 +1969 1.1053
0037 <0095 «0050 -0054
20,000/1000/50 | +5 2 ] 1.1043 1937 1.0993 #1913 1.1000
0061 -0094 +0079 «0084
50,000/250/100 | -5 2 -8270 «1980 «8303 «1984 «8308
0016 «0019 0015 <0019
25,000/250/100 | <5 o2 .8270 1967 »8288 <1961 «8290
0017 «0029 +0020 «0029
10,000/250/100 | 5 .2 8270 <1941 «825% <1920 «8264

) -0027 -0046 +0031 <0049

100,000/1000/50 | 9 1.0 | 4.4998 9717 4.4991 +9761 4.4980
0115 «0214 0150 <0214
50,000/1000/50 | -9 1.0 | 4.4998 .9825 4.5324 +9840 4.5159
0163 <0276 .0228 «027%
20,000/1000/50 | .9 1.0 | 4.4998 9748 ‘4.5324 «9648 4.5245
.0252 +0443 .0382 +0460
100,000/2000/50 | .9 1.0 | 5.1930 9770 5.1784 9714 5.1807
0160 +0292 «0232 <0304
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TABLE 4
Estimates of 8, and b, for (V4 : t >0} In the MW/1 queve with | = 10

true values Iineer regression

-

k/n/frepl. p ay by 8p 3,,

100,000/1000/50 | .5 2 | 1.2429 -1980 | 1.2451
«0021 «0034

50,00071000/%0 | .5 2} 1.2429 +1966 | 1.2422
<0039 0057

20,000/1000/50 | -5 2 | 1.2429 1917 | 1.2371
+0062 -0093

50,000/250/100 | .5 2 +9657 1977 #9692
+0016 -0018

25,000/250/100 | .5 o2 «9657 - 1966 9673
«0018 «0029

10,000/250/100 | .5 2 <9657 1946 «9648
<0027 <0047

100, 000/1000/50 | .9 1.0 | 4.6052 «9713 | 4.60%0
«0115 0214

50,000/1000/50 | «9 1.0 | 4.6052 <9819 | 4.6308
<0163 .0276

20,000/1000/50 | «9 1.0 | 4.60%52 +9758 | 4.6401
«0251 <0442

100,000/2000/50 | .9 1.0 | 5.0695 «9763 | %.2840
<0161 «0293

hidags o

L

o R - FUIVETER SRR L TN T e T
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TABLE 5

Estimates of a, and b, for {Q4 : t> 0} In the M/M/1 queus with 4 = 10

, full delete partial delete
true values | inear regression Iinear regression
k/n/frepl. P ap bp ;n 5,, ;,, ;n

100,000/1000/50 | .5 1.4427 8.9658 1.4350 8.9779 1.4358 8.9763
«0409 0394 «0405 «0395

$0,000/1000/50 | .5 1.4427 8.9658 1.4224 8.9438 1.4224 8.9426
0519 «0536 <0530 «0540

20,000/1000/50 | .5 1.4427 8.9658 1.3783 8.8994 1.3801 8.8980
<0611 01N «0609 .0758

50,000/250/100 | .5 1.4427 6.9658 1.4347 6.9853 1.4336 6.9842
«0253 <0179 «0212 T 0180

25,000/250/100 | .5 1.4427 6.9658 1.4224 6.9725 1.4179 6.969%

.0288 «0252 +0301 «0257
10,000/250/100 | .5 1.4427 6.9638 1.4039 6.9491 1.3986 6.9437
<0345 «0379 +0348 <0374

100,000/1000/50 | -9 9.4912 }43.7087 9.2227 | 43.7424 9.2250 43.7421
«1945 £2232 «1921 #2226

50,000/1000/50 | -9 9.4912 |43.7087 9.3229 | 43.9337 9.3203 43.9316
<2351 <3107 «2365 <3116

20,000/1000/50 | .9 9.4912 [43.7087 9.1984 | 43.8827 9.2080 43.8893
«3155 «4561 «3178 «4580

100,000/2000/50 | .9 9.4912 |50.2875 9.2249 50.1689 9.2261 50.1684
#2333 «3108 <2297 «3085%
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TABLE 6
Estimates of Plmax M+ <x) for {W :n>0) Inthe MM queue with | =10, p = .5
1gjen I 7 n -
Alx=b)/a,)/x
P( max M* < x)
l_(J(n J =
regression
method k/n/#repl. «25/1.0390  +50/1.1776  75/1.353%  .90/1.5%544 .99/2.0243
+2493 +4996 «7499 «9000 +9900
| I near 100,000/1000/50 «2457 497 <7489 -8997 +9900
«0052 «0072 «0062 «0037 <0007
noni inear 100,000/1006/50 «2442 4966 « 7492 «8999 +9899
.0054 .0079 -0074 «0045 -0008
i Inear 50,000/1000/%0 2511 5040 #7535 +9015 <9899
+0082 0117 <0104 «0062 0012
nonl inear 50,000/1000/50 «2489 «503% #7539 9014 «9896
0077 0121 0116 0074 0015
L] .
Iinea- 20,000/1000/50 «2626 5193 «7638 <9053 «9897 ‘
0136 0194 0174 «0107 0022 i
non!inear 20,000/1000/50 <2576 «5208 «7683 +9079 .9898
0131 .0188 0174 .0110 «0023
Al{x ~bp)/ag)/x
P( max MY < x)
1jen =
«25/-71617 +50/.9003 «75/1.0762 «90/1.2771 «99/1.747
«24M +4986 «7496 «8999 «9900
| inear 50,000/250/100 «2438 <4963 «7493 +9003 +9901 |
«0027 .0042 +0039 «0023 <0005
noni i near 50,000/250/100 «2432 <4951 +7481 «8996 +9900 %
.0028 .0040 .0038 -0023 +0005 |
|
{ inear 25,009/250/100 «2464 <5002 7525 «9020 +9903 }
! «0042 <0060 .0052 -0030 +000%
B
1]
i nonlinear 25,000/250/100 «2454 «5001 #7531 +9025 +9904
I «0045 .0060 «0053 «0032 «000%
| Inear 10,000/250/100 2529 <5092 . 7593 +9052 <9906
«0070 0097 .0082 <0049 .0008
nonl!inear 10,000/250/100 2494 5087 7615 <9071 «9909
«0076 .0098 «0081 «0048 «0008
33
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TABLE 7
+
Estimates of Plmax M <x) for {¥ : n >0} in the M/M/1 Queue with U =10, p= .9
1gy<n J n -
' Al(x=b,)/a,)/x
P( max M* < x)
1<J<n F
regression
method k/n/frepl. «25/4.1732 «50/4.8663 2 75/5.7457  .90/6.7502 «99/9.1000
«2454 «4977 «7494 8999 9900
i | near 100,000/1000/50 «2484 «5049 «7577 <9054 «9910
+0065 <0089 0074 «0042 0007
nonlinear 100, 000/1000/50 «2492 <5050 <7569 «9045 «9907
+0065 .0089 «0079 .0049 «0008 .‘
]
| i near 50,000/ 1000/50 «2415 <4952 . 7490 «9001 «9900
0079 0116 «+0101 .0059 ] 0010
nonlinear 50,000/1000/50 «2446 «4990 «7514 «9006 «9897
.0082 0117 0111 <0069 «0012
} inear 20,000/1000/50 «2422 +4968 «7491 «8991 «9894
«0131 0184 0161 0094 <0017
non | I near 20,000/1000/50 2442 +«5045 «7558 «9012 .9888
0132 «0201 <0191 0119 0023
Altx=by)/ay)
P( max MY < x)
e J =
«25/4.8663  .50/5.5595 < +75/6.4389  .90/7.4433  .99/9.7931
«2477 +4989 <7497 «9000 «9900
| lnear 100,000/2000/50 [ .2552 «5100 7590 <5049 <9906
+0090 0121 «0101 .0059 0010
nonl i near 100,000/2000/50 «2539 «5112 « 7607 «9055 «990%
»0092 0132 0119 .0070 0012
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TABLE 8
Estimates of Plmax M’ <x) for {V. : + >0} In the MM/1 queus with 1 = 10,
1gjen 4= t =
using linear regression
Alix=bg)/aq)/x
P( max M* < x)
1<) <n
k/n/frepl. o] «25/1.1776  .50/1.3162 .75/1.4921 «90/1.6930 .99/2.1630
«2493 4996 « 7499 +9000 «9900
100,000/1000/50 %] 2459 +4982 +7503 «9006 «9901
0050 0072 <0062 <0037 +0007
50,000/1000/50 5 «2523 «5062 «7555 <9025 «9900
0082 «0122 Q1N 0067 0012
20,000/1000/50 o5 «2631 5224 7676 «9077 +9902
0134 0196 0174 0106 «+0020
At(x=bp,i/a,)/x
Pl max M* < x)
1<j<n -
«25/.9003 «50/1.0390  .75/1.2148 .90/1.4157 .99/1.8.857
«247T 4986 «7496 «8999 «9900
50,000/250/100 5] +2430 4959 <7494 «900% «9901
0027 0040 0039 0025 «0005
25,000/250/100 5] «2466 +5005 «7528 «9021 «9904
0042 <0062 «0054 0032 +«000%
10,000/250/100 8] «2%18 5076 7579 «9044 +990%
+0070 «0097 0082 0049 <0008
Atix=by)/a,)/x
i P( max M* < x)
! 1<j<n -
; «25/4.2785  .50/4.9717 «75/%.8511 «90/6.85%%  .99/9.2053
«2454 4977 « 7494 8999 9900
3
{ 100,000/1000/5%0 9 .2481 <5048 71576 +9054 «9910
k 0065 0089 .0074 10042 .0007
? 50,000/1000/50 9 2414 <4953 + 7491 +9002 «9900
<0079 0116 «0100 +00%9 0010
20,000/1000/%0 9 2414 «.49%8 « 7484 +8987 «9893
0129 0184 0159 0094 «0017
Atlx=bg)/a,)/x
P( max M* < x)
|_<_J<n J
«25/4.9717  .50/5.6648 «75/6.5442 +90/7.5487 +99/9.8983%
2477 «4989 «7497 »9000 «9900
100,000/2000/50 9 «25%0 «5100 <7991 <9050 <9906
0090 0117 +0102 «.00%9 +0010
35




TABLE 9

Estimates of Plimax M‘ix) for {Qf H f_>_0} in the M/M/1 queue with p = 10,
I:Jin
p= .5 using full delete linear regression, with continuity correction & = 0

Alix=-bp)/a,)/x

PC max MY < x)
1<J<n 1=
k/n/#repl. +3766/9 6137710 .7834/11 -9408/13  .9924/16
.3761 6135 .7833 +9408 <9924
100,000/1000/50 | 3769 +6153 +7839 -9394 9915
<0106 <0129 0114 <0057 -0013
50,000/1000/50 | .3890 -6264 +7908 -9407 9913
.0144 .0173 -0151 <0077 -0020
20,000/1000/50 | 4073 .6447 +8032 9443 <9916
.0213 <0240 -0198 <0092 <0022

Alix=bg)/an)/x

P( max M"ix)

1<J<n
3766/7 «6137/8 »7834/9 »9408/11 +9924/14
3 «3744 -6128 .7831 +9408 +9924
50,000/250/100 3732 <6130 »7832 +9399 +9918
»0048 «0065 +0062 +0032 -Q008
25,000/250/100 <3784 6186 .7872 -9410 «9918
+0066 .0088 <0080 -0040 «0010
10,000/250/100 +3870 «6273 <7933 «9427 «9919

«0101 .0118 «0101 <0050 <0013
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+
Estimates of P(max M < x) for {0? :t >0} in the M/M/1 queue with p = 10,

p= .9, using tull delete linear regression, with continuity correction 6 = 0

I:Jm

TABLE 10

AC(x=by)/a,4)/x

P( max M* < x)

1¢j<n J =~
k/n/#repl. +2644/41 .5293/48 .7604/56 .9089/66 +9906/88
+2599 +5272 .7599 .9088 +9906
100,000/1000/50 2620 5346 .7678 9133 9911
.0070 0106 .0097 .0059 .0012
50,000/1000/50 .2578 .527%5 .7604 .9084 +9901
+0095 0144 .0129 .0074 .0013
20,000/1000/50 +2628 5345 .7647 " .9095 9898 |
0147 .0209 .0179 .0104 0020 o
Al (x-bn)/an)/x
P( max MY < x)
li]in -
+2801/48 +508%/54 .7695/63 «9035/72 +9901/94
2779 +5074 .7693 .9034 +9900
100,000/2000/50 +2861 +5204 .7756 .9085 .9903
L0104 0142 .0124 .0077 .0015




Here are some general observations on Tables 3-10. The approximation

of P{lgggp M; < x} by the exact value of A((x - bn)/an) improves with
greater x, greater n, and lesser p, and is about equally good for wn,
Vt, and 'Qt. Note that confidence intervals generally cover the true
values (excepting the use of continuity correction 6 = 1/2 for Qt)
especially in the percentile evaluations of Tables 6-10. The bias and con-
fidence interval widths tend to decrease as k 1increases, and decrease as
x 1increases in the percentile evaluations. The results for p = .9 are
just about as good as for p = .5. The results for Qt are almost as good
as for Wn and Vt, except that the confidence interval widths are greater
for Qt’ which can be largely attributed to the greatly reducgd number of
regression data points.

For the Wn process, the linear regression procedure tends to produce
estimates with slightly smaller biases and confidence intervals than does
the nonlinear regression procedure. Although neither is a clear winmer, in
this case the linear regression would appear to be better, if just for the
reason of the greater ease and lesser expense 1t entails. (However, che
nonlinear regression problem under consideration is a nice one, and the
linear regression procedure could certainly provide good starting values of
a bn for the nonl}near regression.)

For the Qc process, the (null) continuity correction of 4 = 0 is

superior to &= .5; and thus results for & = .5 are not shown. This is

no surprise in the current case since the approximation of tne exact d.f.

of max H+ by the value of A using exact &_, b has the same error
1<j<n J n’ n

patterns for Qt as for Wn and Vt. The full and partial delete pro-
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cedures give comparable results, so only the estimates of an, bn are
shown for the partial delete procedure.

Some experimentation on the Wn process (not reported in the tables)
using linear regression estimates a s bn to arrive at estimates a,=a,
bn' -a In(n'/n) + bn and corresponding percentile evaluations for n'
cycles was performed using n' = 1000 and n = 250 and 100. The general
pattern of results is that for fixed k, smaller values of n give smaller
confidence intervals but greater biases, unless k {s very small. The de-
crease in confidence interval widths is mostly attributable to the use of
more regression data points for smaller n. Again considering the results
reported in the tables for n = 1000, in many instances k = 50,000
performs better than k = 100,000. All this suggests that 1ncreas1;g the
k/n ratio beyond a certain point may not be worthwhile. However, optimal
values of k and n are very problem dependent.

Most of the cost in using these procedures derives from the develop-
ment and running of the simulation model. Another substantial portion of

the cost is keeping track of the . However this can be done once,

ViK'
and then empirical distribution functions corresponding to the different
values of n can easily be constructed. Different variations of the re-
gression procedures could be performed for each value of u. In short, the
variations are not competitors, but rather can be used to help assess the

validity of the results. Any special insight to the problem at hand could

also be used to advantage.
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